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Abstract—Kyber is a promising candidate in post-quantum
cryptography standardization process. In this paper, we propose
a targeted optimization strategy and implement a processor for
Kyber on FPGAs. By merging the operations, we cut off 29.4%
clock cycles for Kyber512 and 33.3% for Kyber1024 compared
with the textbook implementations. We utilize Gentlemen-Sande
(GS) butterfly to optimize the Number-Theoretic Transform
(NTT) implementation. The bottleneck of memory access is
broken taking advantage of a dual-column sequential scheme.
We further propose a pipeline architecture for better perfor-
mance. The optimizations help the processor achieve 31684 NTT
operations per second using only 477 LUTs, 237 FFs and 1 DSP.
Our strategy is at least 3x more efficient than the state-of-the-art
module for NTT with a similar security level.

I. INTRODUCTION

Public key cryptography based on large integer factoring

and discrete logarithm problem is widely used in digital sig-

nature, electronic authentication and TLS/SSL key exchange,

etc. Quantum computers would completely break these cryp-

tosystems with Shor’s algorithm [1]. To seek for appropriate

substitutes, the National Institute of Standards and Technology

(NIST) called for post-quantum public-key encryption, key

encapsulation mechanism and digital signature schemes in

2017. Interest in lattice-based cryptography has increased due

to the quantum-resistant properties and the potential for high-

speed implementation with relatively small key and ciphertext

size [2], [3].

Regev [4], [5] introduced Learning With Errors (LWE)

problem supported by a theoretical proof of security. However,

a large parameter matrix A limits its efficiency. Lyuba-

shevsky [6] et al. proposed Ring-Learning With Errors (Ring-

LWE) over polynomial ring Zq[X]/ (Xn + 1) to avoid the

large parameter. Although Ring-LWE is more practical than

the standard LWE, its algebraic structure might enable threat-

ening attacks [7]. Module-Learning With Errors (Module-
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LWE) hardness assumption proposed in [8] provides a trade-

off between security and efficiency with a scalable vec-

tor of polynomials (polyvec) structure. As a competitive

instance, Kyber [9] algorithm fixes the polynomial ring

as Z7681[X]/
(
X256 + 1

)
. Thus, as the most computation-

ally intensive operation, multiplication over k-dimensional

polyvec can be optimized with a linear algorithm named NTT,

which can reduce computational complexity from O(n2) to

O(n log n) [10], [11].

There has been increased interest in implementing Ring-

LWE on FPGAs due to the potential towards high-performance

and compact application scenarios [12]–[17]. A relatively new

Ring-LWE-based scheme, known as NewHope [18], together

with its variant NewHope− Simple [19] were implemented

on Artix7 FPGAs with targeted optimization in [16], [17].

However, we have not found any detailed optimization for

Module-LWE-based schemes on FPGAs so far. Among the

existing works, the high-efficiency implementations like [14]

initialize several processing elements in parallel thus more

arithmetic and memory instances are required. On the other

hand, the NTT algorithm and memory access takes a lot of

clock cycles for compact processors like [12], [13]. Thus,

implementing a both time and area efficient processor is still

a hard work.

In this paper, we design and implement an FPGA-based

processor for operations over polyvec with a good trade-off

between area and performance. The efficiency of lattice-based

schemes makes a significant improvement compared with the

previous hardware implementations. Our contributions are as

follows:

1) We optimize the NTT algorithm with GS butterfly. The

GS butterfly is used both in forward and inverse NTT in

order to utilize the internal DSP adders. The optimization

reduces a total of 29.4% clock cycles for Kyber512
and 33.3% for Kyber1024 compared with the textbook

implementations.

2) We develop dual-column sequential storage and bit-

reversed address accessing. These techniques keep the

datapath free of bubble and avoid redundant latency
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caused by rearrangement so that our processor attains at

least 3x faster than LATINCRYPT’17 [16].

3) We implement a pipeline processor making use of the

internal registers of DSP and block RAM (BRAM)

slices. Although multiplexing NTT, multiply-accumulate

(MACC) and multiply-add (MADD) operations on a

single processor, it can perform 31684 NTT calculations

for 4-dimensional polyvec at 130MHz.

The remainder of the paper is organized as follows: In Sec-

tion II we provide a brief mathematical background of Kyber
and NTT algorithms. Section III introduces our optimizations

and hardware architecture on FPGAs. We implement and

compare the results with the Ring-LWE-based NTT module

in Section IV. Finally, Section V draws the conclusions.

II. PRELIMINARIES

A. Symbol Definition

The polynomial ring Zq[X]/ (Xn + 1) is represented as

Rq in which n is the dimension and q is the modulo. For a

polynomial a ∈ Rq, we suggest that a =
∑n−1

i=0 aix
i, ai ∈ Zq .

Let ab and a ◦ b denote polynomial multiplication and point-

wise multiplication both over Rq , respectively. Vectors of

polynomials are written as bold lower-case letters like s.

Bold upper-case letters like A are matrices. If not stated,

all the polynomial elements in vectors or matrices are over

Rq . Vectors will be column-wise by default. For a vector a
(or matrix A), its transpose is aT (or AT ). The centered

binomial distribution is defined as βη for some positive integer

η [9], a k-dimensional vector of polynomials can be generated

according to the distribution βk
η . Throughout the paper, we

will write normal-font NTT whenever we refer to the general

technique and use bold-font NTT whenever we refer to the

corresponding function.

B. Kyber Algorithm and Parameter Sets

Kyber is a candidate in NIST post-quantum cryptography

standardization consisting of key generation, encryption and

decryption algorithms. Given A as a global matrix of polyno-

mials with coefficients sampled from uniform distribution in

NTT domain, a simplified version is shown as follows.

• Kyber.KeyGen(A): Choose two polyvec s, e from βk
η

and compute t = As+ e. The public key is (A, t) and

the private key is s.

• Kyber.Enc(A, t,m): The message m is first encoded to

m. Sample polyvec r, e1 from βk
η and e2 from βη . The

ciphertext then consists of polyvec u = AT r + e1 and

polynomial v = tT r+ e2 +m.

• Kyber.Dec(s,u, v): Compute m′ = v−sTu and recover

the original message m from m′ using a decoder.

For Kyber, the most expensive operations are over vector

or matrix of polynomials. A typical computational intensive

formula is As as shown in Eq. (1).

As =

[
A (0, 0) s(0) +A (0, 1) s(1)
A (1, 0) s(0) +A (1, 1) s(1)

]
(1)

Kyber provides different post-quantum security levels

which enables a fair comparison with the NewHope as shown

TABLE I
PARAMETER COMPARISONS BETWEEN Kyber AND NewHope IN NIST

STANDARDIZATION.

Algorithm
Parameter

(n/k/q)
Quantum

Security (bit)
Ciphertext
Size (Byte)

Kyber512 256/2/7681 102 800
Kyber1024 256/4/7681 218 1504

NewHope512 512/1/12289 101 1120
NewHope1024 1024/1/12289 233 2208

in Table I. In this paper, we focus on Kyber512 with light pa-

rameters and Kyber1024 with paranoid parameters. The fixed

Rq brings an additional advantage and therefore the polyvec
processor can be easily configured for different security levels.

C. Multiplication of Polyvec

Pöppelmann and Güneysu introduced a NTT-based

optimization for polynomial multiplication [10]. In

Z7681[X]/
(
X256 + 1

)
, we can find an n-th root of

unity ω = 3844 and its modular square root ψ = 62
such that ψ2 ≡ ω mod q. Forward NTT is defined as

NTTω(a)i =
∑n−1

j=0 ajω
ij mod q, i = 0, 1, . . . , n − 1.

In practice, an efficient variant named negacyclic NTT

(negNTT) is widely used to accelerate multiplication of

polyvec. We calculate a basic polynomial multiplication as

ab = negNTTω−1(negNTTω(a) ◦ negNTTω(b)). We

denote point-wise multiply polynomial a by (1, ψ, · · · , ψn−1)
as PwMψi(a) (define PwMψ−i(a) similarly). For

i = 0, 1, . . . , n − 1, Eq. (2) shows the forward negNTT

algorithm.

negNTTω(a)i =NTTω(PwMψ(a))i

=
n−1∑
j=0

ψjajω
ij mod q

(2)

The forward negNTT adds pre-multiplication by exponent

of ψ compared with NTT, which transforms the polynomial

to NTT domain for point-wise multiplication. The corre-

sponding inverse negNTT is quite similar. It substitutes ω to

its inverse ω−1 mod q = 6584 and replaces the additional

pre-multiplication to a post-multiplication by exponent of

ψ−1 mod q = 1115. Finally, each coefficient is multiplied

by the scalar n−1 mod q = 7651. Inverse negNTT is denoted

as Eq. (3).

negNTTω−1(a)i =n−1PwMψ−1(NTTω−1(a))i

=n−1ψ−i
n−1∑
j=0

ajω
−ij mod q

(3)

The negNTT algorithm executes polynomial-by-polynomial

and performs in-place operation based on butterfly operation.

The two widely-used butterflies are Cooley-Tukey (CT) but-

terfly and GS butterfly as shown in Fig. 1. They share the same

time-efficiency and consist of the same elements. CT butterfly

performs multiplication before addition and subtraction, while

GS butterfly uses a multiplication result only in one path.
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Fig. 1. Comparison between the butterfly structures

III. OPTIMIZATION OF THE OPERATIONS

A. Optimizing Arithmetic Operations over Polyvec

In Kyber algorithm, operations over polyvec include for-

ward and inverse negNTT , point-wise multiplication, and

polyvec addition, etc. These operations are the most expensive

parts in terms of area and time. A representative formula is

As+ e, which consists of all the typical polyvec operations.

Since the elements in polynomial matrix A are sampled in

NTT domain, all we need to do in this formula are the

following 10 steps [9].

1) Initialize coefficients into a RAM through a write port.

This costs n× k cycles.

2) Calculate PwMψi(s), which costs n× k cycles.

3) Transform polyvec s to NTT domain by

NTTω(PwMψ(s)). This costs n × k × log(n)
cycles.

4) Rearrange the bit-reversed order to normal order which

costs about n× k cycles.

5) Point-wise-multiply A◦negNTTω(s). This costs n×k2

cycles for multiplication and n× k × (k − 1) cycles for

additions.

6) Perform NTTω−1 transformation on the point-wise-

multiply result which costs n× k × log(n) cycles.

7) Rearrange the bit-reversed order to normal order again.

This costs about n× k cycles.

8) Calculate PwMψ−i , which costs n× k cycles.

9) Calculate PwM7651 to obtain As. This costs n × k
cycles.

10) Add the error polyvec e to As, which costs n×k cycles.

Many hardware implementations utilized CT butterfly

structure such as [10], [12], [13]. In a software implementa-

tion, Pöppelmann [20] used CT butterfly in forward NTT com-

puting and GS butterfly in inverse NTT computing to avoid

pre- and post-operations. However, the latter strategy has side

effects in hardware on account of additional area consumption.

In this hardware implementation, we only instantiate a GS
butterfly structure to avoid step 8 after the inverse NTT

transformation. The utilization of GS butterfly enables the fol-

lowing three optimization techniques. (1) Since only one path

relates to the multiplication result, we can perform subtraction

operation with the pre-adder of the DSP slice. This reduces

the delay and area of LUT-based combinational circuits. (2) In

order to further reduce the unnecessary latency, step 2 can be

merged to step 1 by performing multiplication before storing

the coefficients. (3) The step 9 can be merged into step 10 by

converting addition into MADD. The techniques (2) and (3)

balance the computational load on the multiplier and 2×n×k
clock cycles are saved.

Unlike the point-wise multiplication for polynomials [10],

the extra addition leads to more time and area consumption

in the polyvec multiplication. In step 5, Kyber1024 needs to

perform 4×n multiplication operations and 3×n additions. For

Kyber512, 2×n multiplication operations and n additions are

required. Step 5 can be substituted with MACC operation of

DSP which directly accumulates the results of each multiplica-

tion into a built-in registers (i.e., dsp p register), thus reducing

the redundant latency for addition. In general, n×k× (k−1)
cycles are saved.

In subsection III-B, we will further show a technique to

eliminate step 4 and step 7. Thus the process costs only

(2 log(n)+k+2)×n×k clock cycles after our optimizations,

which save a total of 29.4% cycles for Kyber512 and 33.3%

cycles for Kyber1024. We reconstitute the above 10 steps to

5 as shown in Table II.

B. Optimizing Memory Access

In the NTT implementation, in-place operation helps to

achieve a compact memory utilization. In this case, the but-

terfly structure needs to read two coefficients and write the

other two regardless of the rotation factor ωn. For BRAMs

on FPGAs, a read or write operation takes at least 1 clock

cycle. Thus, to read a value and then write in the same

position using one port would always need 2 clock cycles.

Even though the two ports of one BRAM can be configured

as two read ports, two write ports or one read and one write

for different addresses, the coefficients can not be read and

written in the same clock cycle. As a result, dataflow will get

a ”bubble” and DSP slices will be idle. On hardware, memory

access becomes the bottleneck of efficient implementation.

In [16], the implementation for NewHope− Simple takes

7 clock cycles to perform a butterfly operation, in which

2 extra cycles are occupied by memory access. In [13] the

coefficients are stored in two columns in a swapped order,

but this requires redundant clock cycles to rearrange the

paired coefficients. According to the structural characteristics

of polyvec in Kyber, we propose a dual-column sequential

storage structure. The proposed structure enables a pipeline

memory access scheme which reads and writes 2 coefficients

in each clock without redundant latency.

Our storage is arranged quite concise as shown in Fig. 2.

For polyvec s =
[
s(0), s(1)

]T
, the polynomial coefficients

in s(0) and s(1) are sequentially initialized in pair like (s0(0),
s0(1)), (s1(0), s1(1)), · · · , (s255(0), s255(1)). Polynomial s(0)
is stored in the higher 13 columns and s(1) is stored in

the lower 13 columns. In the memory, coefficients with the

same serial number are stored in the same address. High-

dimensional polyvecs in Kyber1024 are also applicable by

increasing the memory depth. As shown in the Algorithm 1,

by disjoining the read and write ports, we access and store

coefficients at the same time. The algorithm enables a pair of

coefficients belonging to different polynomials to be accessed

in parallel and operated apart. With the pipeline architecture

in subsection III-C, extra latency of memory access in [16] is

avoided and thus dataflow is free of bubble.

The storage scheme further enables the underlying bit-

reversed address accessing technique, which is employed to

solve the challenge of bit-reversal in NTTω−1 step. An in-place

forward or inverse NTT algorithm transforms the coefficients

arrangement either from normal order to bit-reversed order, or



TABLE II
RECONSTITUTE As+ e INTO 5 STEPS

Step Operation DSP Logic
Times of Mul.

Kyber512/1024
INIT init(PwMψ(s)) dsp a× dsp b 512/1024

NTTω negNTTω(s) = NTTω(PwMψ(s)) (dsp d− dsp a)× dsp b 2048/4096
MACC MACC = A ◦ negNTTω(s) dsp a× dsp b+ dsp p 1024/2048

NTTω−1 As′ = PwMψ−1 (NTTω−1 (MACC))a (dsp d− dsp a)× dsp b 2048/4096

MADD As+ e = n−1 ◦As′ + e dsp a× dsp b+ dsp c 512/1024
a Operations in negNTTω−1 step is slightly different with inverse negNTT. We denote As′ as a intermediate

value without n−1 operation.

from bit-reversed order to normal order. As a basic method,

the authors in [10], [12] deployed a rearrangement step after

the forward and inverse NTT operations. In [12], about n
clock cycles are consumed to complete bit-reversal. In this

work, GS butterfly-based forward NTTω step reverses the

normal order to bit-reversed order. In the NTTω−1 step, we use

the inverted bit connection of address line. This counteracts

the bit-reversed order in the memory. After NTTω−1 step,

polynomial coefficients will be naturally restored in normal

order. We will show that bit-reversed address connection is

much cheaper than rearrange memory data in subsection III-C.

This technique estimates the step 4 and 7, thus 2 × n × k
operations are saved.

C. Processor Structure and Pipeline Technique

The prcessor structure shown in Fig. 2 consists of three

subunits, namely memory, arithmetic logic unit (ALU) and a

Finite State Machine (FSM)-based control unit.

The arithmetic logic is reused in different steps and each

operation is followed by a modular reduction operation. We

implement a Barret reduction unit as illustrated in [21], [22].

Since this reduction unit replaces the multiplying by a constant

with shifts-and-adds using LUTs, it becomes the critical path

in the whole architecture. The problem is solved by pipeline.

We tried to add one to three level pipelines. In order to

Algorithm 1: Optimized NTT with GS butterfly

Input: Polynomial a ∈ Rq, ψi and ψ−i stored in psi[ ] and invpsi[ ],
respectively.

Output: Polynomial a ∈ Rq = NTTω(a) or NTTω−1 (a).

1 logt = 8; /* m = (1 � logm) */
2 for (logm = 0;m < n;m + +) do
3 logt = logt − 1 /* t = (1 � logt) */
4 for (i = 0; i < m; i + +) do
5 jF irst = i � (logt + 1)
6 jLast = i � (logt + 1) + t
7 for (j = jF irst; j < jLast; j + +) do
8 if NTTω then
9 (u1, u2) = a[j] /* NTTω */

10 (v1, v2) = a[j + t]
11 a[j] = (u1 + v1, u2 + v2) mod q
12 ω = psi[(j − jF irst) � (logm + 1)]
13 a[j + t] = ((u1 − v2)ω, (u2 − v2)ω) mod q
14 else
15 (u1, u2) = a[BitReverse(j)] /* NTTω−1 */
16 (v1, v2) = a[BitReverse(j + t)]
17 a[BitReverse(j)] = (u1 + v1, u2 + v2) mod q

18 ω−1 = invpsi[(j − jF irst) �
(logm + 1) + 1 � (7 − logt)]

19 a[BitReverse(j + t)] =

((u1 − v2)ω−1, (u2 − v2)ω−1) mod q
20 end
21 end
22 end
23 end

maintain a compact area, we finally add one level pipeline

to obtain a reasonable high frequency.

An external selection signal controls the working stage

of the processor. The FSM controls the circuit through the

address registers and the multiplexer in ALU. We integrate

the mentioned functions into one processor. For NTT compu-

tation, our pipeline implementation completes one butterfly in

7 stages (stage 0 to 6) so that the total latency is 2055 clock

cycles. Operations in each stage are shown as follows. Note

that register read addr s is initialized to 0.

- Stage 0 to 1. Since we enable the read pipeline of

RAM s, latency of read operation is 2 cycles and

the first output coefficient pair is (s0(0), s0(1)). The

read addr s updates every clock cycle and the second

address would be 128.

- Stage 2. Coefficients (s0(0) and s0(1)) are stored in the

Hi and Li registers respectively.

- Stage 3 to 4. The coefficients s128(0), s0(0) in Hi and

corresponding ω perform a butterfly-and-mod q opera-

tion. Coefficient s0(1) shifts from Li to Hi, and s128(1)
is stored in Li.

- Stage 5. Results adder o and barret o are stored in Ho

and Lo, respectively. Note that adder o is to be writen

into s0(0) and barret o is to be writen into s128(0).
- Stage 6. Data s0(0) stored in Ho and the adder o for

s0(1) are writen into the address 0 in pair. s128(0) in

Lo is shifted to Ho and barret o is stored in Lo. They

would be writen into address 128 in the next clock cycle.

The processor can also execute other steps in As + e by

reusing the arithmetic and logic units.

IV. IMPLEMENTATIONS AND COMPARISON

A. Implementations on FPGAs

We have implemented our processor on Xilinx XC7A200T

and XC6SLX45T FPGAs with parameter sets (n, k, q) of

Kyber512 (256, 2, 7681) and Kyber1024 (256, 4, 7681),

respectively. Since the polyvec coefficients need a mass of

storage, it is advisable to store data in BRAMs. Each 36Kb

BRAM slice in Xilinx 7 series FPGAs can be divided into two

18Kb slices. The 18Kb storage can be configured as 512 × 36

or 1024 × 18. Correspondingly, 1 BRAM slice in Spartan6 has

18Kb space. In Kyber512, since the ceiling of each coefficient

is �log2 7681� = 13 bits width, each polyvec can be storaged

in a block of 256 × 26 memory exactly as simple dual-port

mode.
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Fig. 2. Processor architecture for vector of polynomials

B. Experimental Results and Comparisons with the Counter-
parts

The test results obtained after post-place and route (Post-

PAR) are listed in Table III. On Artix7, the pipeline Barret

reduction module occupies 58 LUTs and 14 FFs and the com-

plex control unit costs 251 LUTs and 118 FFs, in other words,

about half the area. The maximum frequency of our processor

is 136MHz for Kyber512 and 130MHz for Kyber1024.

Our polyvec processor is comparable with the polynomial

oriented modules for Ring-LWE-based algorithms such as

NewHope. For a fair comparison, Kyber512 is to be com-

pared with NewHope512 (512, 1, 12289) and Kyber1024 is

to be compared with NewHope1024 (512, 1, 12289) with the

similar security level. Some antecedent implementations for

polynomial multiplication are also compared because of their

similar computational costs. It consumes n×k
2 log n = 2304

numeral multiplication operations for parameter sets (n, k) =
(512, 1) and 2048 for (256, 2) in NTT transformation. Most

polynomial multiplication (abbreviated as Mul) implementa-

tions consider the total latency as the sum 2 forward NTT,

1 point-wise multiply and 1 inverse NTT, which costs 7424

multiplication operations in total. Correspondingly, we define

Mul′ for Kyber as the complexity of cascading 2× NTTω

step, 1× MACC step and 1× NTTω−1 step, which costs

7168 multiplication operations after optimizations. In order

to compare the performance more intuitively, we calculate the

number of NTT and Mul′/Mul operations per second.

The implementation of NewHope− Simple in [16] uses

one DSP for NTT and another DSP for multipurpose. Al-

though they use CT butterfly for forward NTT and GS butter-

fly for inverse NTT to avoid O(n) cycles for rearranging, the

time-consuming reduction module and extra memory access

cycles are massive burden. Their butterfly operation costs

1 clock cycle on multiplication and leaves 4 for modular

reduction and 2 for memory access so that total of 7× n
2 log(n)

are used. Their modular reduction module is not further

optimized and brings high latency. Although the modular

reduction module can be improved, our processor still has a

3x advantages in speed. The LUTs and FFs results for [16] is

obtained by re-synthesizing their open source code in Vivado

2018.2. Since the area of different modules can not be simply

added up, we only count the independent NTT module. Their

total area would be larger than our implementation.

Although we use only one DSP to make the circuit compact,

the performance is comparable to those of high performance

implements. The implementation of NewHope in [17] tries

to improve performance by adding up to 4 parallel paths.

As the cost of high-speed, 8 DSP slices is occupied in NTT

and reduction module. The utilization of DSPs is obviously

inferior to our implementation. Actually, as a better trade-off,

our processor obtain over 55.2% performance with less than

their 17.2% logical units.

Compared with earlier Ring-LWE implementations [10],

[15], we also have at least 1.89x advantages in terms of effi-

ciency. The advantage is relatively small because the modules

for Ring-LWE do not implement the functions like MACC,

MADD, etc. The result of [13] is not listed in the table because

the area of NTT module is not available.

V. CONCLUSION AND FUTURE WORK

In this work, we propose an optimized hardware implemen-

tation for Kyber. A processor is realized on FPGAs with a

good trade-off between area and performance. The optimized

NTT algorithm with GS butterfly cuts off the clock cycles by

about one third compared with the textbook implementations.

The dual-column sequential storage scheme keep the datapath

free of bubble. Besides, the pipeline implementation reuses

most logic units so that the structure is kept compact. Taking

advantages of the optimizations above, our processor is at

least 3x more efficient than the NewHope implementations.

In the future, we will focus on implementing entire Kyber
cryptosystem against side channel attack and comparing it

with other selected algorithms.



TABLE III
COMPARISON BETWEEN SIMILAR HARDWARE IMPLEMENTATIONS

Processor Parameters(n/q/k) Device Area Cycles Operations/s Efficiencya

Kyber512
256/7681/2 Artix7

LUTs: 442 DSP: 1 NTT: 2055 NTT: 66180 NTT:149.7
this work FFs: 237 BRAM36:1.5 Mul′: 7197 Mul′: 18897 Mul′: 42.8

Kyber512
256/7681/2 Spartan6

LUTs: 466 DSP: 1 NTT: 2055 NTT: 41443 NTT: 88.9
this work FFs: 237 BRAM18: 2 Mul′: 7197 Mul′: 11833 Mul′: 25.4

Ring-LWE
512/65537/1 Spartan6

LUTs:1585 DSP: 1 NTT: NA NTT: NA NTT: NA
[10] FFs: 1205 BRAM18: 4 Mul: 10014 Mul: 19572 Mul: 12.3

Ring-LWE
512/65537/1 Spartan6

LUTs:3259 DSP: 1 NTT: NA NTT: NA NTT: NA
[15] FFs: 3242 BRAM18: 6 Mul: 9429 Mul: 13787 Mul: 4.2

Kyber1024
256/7681/4 Artix7

LUTs: 477 DSP: 1 NTT: 4103 NTT: 31684 NTT: 66.4
this work FFs: 237 BRAM36: 2 Mul′: 14365 Mul′: 9050 Mul′: 19.0

NewHope − Simple
1024/12289/1 Artix7

LUTs: 415 DSP: 2 NTT: 35845 NTT: 3487 NTT: 9.3
[16] FFs: 251 BRAM36: 4 Mul: 80909 Mul: 1545 Mul: 3.7

NewHope
1024/12289/1 Artix7

LUTs:2832 DSP: 8 NTT: 2616 NTT: 57339 NTT: 21.9
[17] FFs: 1381 BRAM36: 10 Mul: NA Mul: NA Mul: NA

Kyber1024
256/7681/4 Spartan6

LUTs: 506 DSP: 1 NTT: 4103 NTT: 19109 NTT: 37.8
this work FFs: 237 BRAM18:3.5 Mul′: 14365 Mul′: 5458 Mul′: 10.8

Ring-LWE
1024/65537/1 Spartan6

LUTs:1644 DSP: 1 NTT: NA NTT: NA NTT: NA
[10] FFs: 1241 BRAM18:6.5 Mul: 21278 Mul: 9399 Mul: 5.7

a Efficiency is defined as number of operations per second per LUT.
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