
Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
1 / 18

Towards Efficient Kyber on FPGAs:

A Processor for Vector of Polynomials

15. Jan. 2020

Zhaohui Chen1,2 , Yuan Ma2*, Tianyu Chen2, Jingqiang Lin2 and Jiwu Jing1

1School of Computer Science and Technology, University of Chinese Academy of Sciences
2State Key Laboratory of Information Security, Institute of Information Engineering, CAS

Beijing, China

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
2 / 18

Introduction

Public Key Cryptography

◼Different keys are used for encryption and decryption

◼Algorithm triples {KeyGen, Encryption, Decryption}

◼Standardized algorithm (Classic)

➢RSA, see PKCS#1, ANSI X9.31, IEEE 1363

Key Generation

Encryption Decryption

I am in

Beijing

Public key

Private Key

Sender

U3+:e$@

sc/c2*W^

Plaintext Ciphertext

I am in

Beijing

Plaintext

Recipient

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
3 / 18

Introduction

An Imminent Threat

◼Quantum algorithms
➢Shor’s algorithm needs about 1 billion qubits [Shor’97]

➢20 million qubits break RSA in 8 hours [Gidney’19]

◼Quantum computers
➢ In May 2017, USTC developed a 10-qubit circuit

➢ In Oct. 2017, Intel announced a 17-qubit chip

➢ In Nov. 2017, IBM established a 50-qubit computer

➢ In Mar. 2018, Google announced a 72-qubit chip

➢ In Aug. 2018, Rigetti Computing plans to build and
deploy a 128-qubit system

Algorithm optimization space and computing

power growth should be considered

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
4 / 18

Introduction

Public key cryptography

Classic

Post-quantum

Code-based
Lattice-based

Kyber

NewHope

New Cryptography Schemes

◼ Post-quantum cryptography = Quantum-resistant
➢Kyber is a new scheme based on Module-LWE problem

[Bos, Ducas. et.al’18]

We are here

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
5 / 18

Introduction

A Brief Introduction to Kyber

◼Computing over vector of polynomials (polyvec)
➢13-bit coefficients, modulo 7681

➢n-dimensional polynomial, n=256

➢k-dimensional vector, depends on security level (2,3,4)

◼Example, As + e is computational intensive

⚫ Kyber.KeyGen(A): Choose two polyvec s, e from βk
η and compute t = As + e.

The public key is (A, t) and the private key is s.

⚫ Kyber.Enc(A, t, m): The message m is first encoded to ͞m. Sample polyvec r,

e1 from βk
η and e2 from βη. The ciphertext then consists of polyvec u = ATr + e1

and polynomial v = tTr + e2 + ͞m.

⚫ Kyber.Dec(s, u, v): Compute m’ = v−sTu and recover the original message m

from m’ using a decoder.

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
6 / 18

Introduction

Multiplication over polyvec

◼Example: for Kyber512, k=2
➢ t = As + e

◼Number-Theoretic Transformation (NTT) [Po.’12]
➢Execute NTT transformation for k polynomials

respectively in a polyvec.

=+

sA e t

in the figure,

n=8

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
7 / 18

Contributions

Overview

◼Optimizing the Control Logic
➢Merge operations to avoid idle cycles

◼Optimizing Memory Access Scheme
➢Dual-column sequential storage structure

➢ in-place computation without bit-reversal

◼Optimizing Arithmetic Logic Unit
➢Gentlemen-Sande (GS) butterfly

➢ Integrate NTT, multiply-accumulate and multiply-add

➢Pipelined implementation

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
8 / 18

Contributions

Optimizing Arithmetic Operations

◼By adjusting control logic
➢Save 29.4% cycles for Kyber512 (k=2)

➢Save 33.3% cycles for Kyber1024 (k=4)

Pre-operationsLoad Data

Normal

domain

NTT

domain

Post-operations

Forward NTT

transformation

Inverse NTT

transformation

Coefficient-wise

multiplication

Input Output

n k n k 0

n k (1+log(n))

n k log(n)

n k (2k-1) n k k

2 n k n k

n k (2+log(n))

n k log(n)

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
9 / 18

Contributions

Optimizing Memory Access Scheme

◼Break the bottleneck
➢Read 2 coefficients and writeback 2 coefficients

➢Block RAM slice can be configured as
⚫ 2 read ports

⚫ 2 write ports

⚫ 1 read and 1 write ports

◼Dual-column sequential scheme
➢ Increase memory width

➢Example, Kyber512 (k=2)

A

✓ 0.5 BRAM

✓ Width=26

✓ Depth=512

Block RAM 36K

0

1

s

0 1 ✓ 0.25 BRAM

✓ Width=26

✓ Depth=256

Block RAM 36K

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
10 / 18

Contributions

Optimizing Memory Access Scheme

◼In-place NTT transformation
➢Transform 2 polynomials with time-multiplexed ALU

➢Swap data before and after execution

···

RAM_s

256×26

···

s0(0)

s1(0)

s2(0)

s0(1)

s1(1)

s2(1)

s253(0)

s254(0)

s255(0)

s253(1)

s254(1)

s255(1)

s(0) s(1)

s128(1)

reg

s128(0)

s0(1)

s0(0)

reg

s128(1)

s128(0)

s0(1)

s0(0)

reg

reg

Execute

Read

Writeback

s128(1)

s128(0)

s0(1)

s0(0)

Block RAM

ALU

Data flow

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
11 / 18

Contributions

Optimizing Arithmetic Logic Unit

◼Make full use of the DSP slice
➢Cooley-Tukey vs. Gentlemen-Sande butterfly

Gentlemen-Sande

DSP
ω
v

u u'

v'

DSP

ω
v

u u'

v'

Cooley-Tukey

c

a

d

b

dsp_o

p

0

DSP48

dsp_sel

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
12 / 18

Contributions

Optimizing Arithmetic Logic Unit

◼Integrate functions in one processor
➢Forward NTT and inverse NTT transformation

➢Multiply-accumulate over polyvec, like a0◦s0+a1◦s1

➢Multiply-add over polyvec, like a0◦s0 + e0

Multiply-accumulate Multiply-add

c

a

d

b

dsp_o

p

0

DSP48

dsp_sel

c

a

d

b

dsp_o

p

0

DSP48

dsp_sel

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
13 / 18

Contributions

Optimizing Arithmetic Logic Unit

◼Design a pipelined structure
➢Maximize the usage of DSP/BRAM internal registers

➢Trade-off between area and performance

RAM_A

RAM_s

Control Unit

Barret Reduction

ROM

Hi

Li

write_addr_s

read_addr_s

read_addr_psisel/dsp_selwea_s

done

ALU

Li

Lo

done

adder_o

dsp_o

read_addr_A
[7:0] [0:7]

data_i

dsp_sel

data_i

n-1

si(0)

si(1)

data_i

clock

reset

data_o

data_o

sel_nxt

Ho

Lo

dsp_c dsp_a dsp_d dsp_b

dsp_o

barret_o

adder_o

p

0

···

Ai(0,0) Ai(0,1)

···

RAM_A
512×26

···

Ai(1,0) Ai(1,1)

···

···

RAM_s
256×26

···

s0(0)

s1(0)

s2(0)

s0(1)

s1(1)

s2(1)

s253(0)

s254(0)

s255(0)

s253(1)

s254(1)

s255(1)

A0(0,0)

A1(0,0)

A2(0,0)

A0(0,1)

A1(0,1)

A2(0,1)

A253(1,0) A253(1,1)

A254(1,0)

A255(1,0)

A254(1,1)

A255(1,1)

···

ψi

···

ROM

512×13

···

ψ-i

···

ψ0

ψ1

ψ2

ψ-253

ψ-254

ψ-255

Add Then

Reduction DSP48

s(0) s(1)

bit-revised

connection

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
14 / 18

Implementations

Implementation on FPGAs

◼Experimental Setup
➢ Implemented in Verilog HDL available at:

⚫ https://github.com/cccisi/Kyber_ASPDAC

⚫ Built on XILINX Vivado® 2018.2 design suite for Artix-7

⚫ Also built on XILINX ISE ® 14.7 design suite for Spartan-6

➢Post-place and route

◼Results
➢Maximum frequency

⚫ 130MHz for Kyber1024

⚫ 31684 NTT operations per second

➢Area
⚫ The processor occupies 477 LUTs and 237 FFs

https://github.com/cccisi/Kyber_ASPDAC

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
15 / 18

Implementations

Implementation on FPGAs

◼Comparisons on NTT efficiency
➢Same security level on Artix-7

➢Compared with [Oder, Güneysu’17]
⚫ Integrated more functions

⚫ Over 5x advantages in performance

➢Compared with [Kuo, Yang’17]
⚫ Over 55.2% performance with about 17.2% logical units

Processor
Area

Operations/s Efficiency
LUTs FFs DSPs

This Work 477 237 1
NTT: 31684 66.4

MUL: 9050 19.0

Oder, Güneysu’17 415 251 2
NTT: 3487 9.3

MUL: 1545 3.7

Kuo, Yang’17 2832 1381 8
NTT: 59337 21.9

MUL: NA NA

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
16 / 18

Conclusion

◼Conclusion
➢We achieved high-efficiency post-quantum algorithm

on resource-constrained hardware

➢Broke memory bottleneck for higher performance

➢Made full use of FPGA internal resources

➢ Implemented the key modules for Kyber512/1024, but
NOT the entire Kyber cryptosystem

◼Future works
➢Countermeasures against possible attacks, side-

channel attack …

➢Which post-quantum algorithms are the outstanding
ones in practical applications?

Thank You For Your Attention!

zhiyuan.mp4

Towards Efficient Kyber on FPGAs: A Processor for Vector of PolynomialsZhaohui Chen UCAS
18 / 18

◼ [Shor’97] P. W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer,” SIAM J. Comput., vol. 26,
no. 5, pp. 1484–1509, 1997.

◼ [Gidney’19] Gidney, Craig, and Martin Ekerå. "How to factor 2048 bit RSA
integers in 8 hours using 20 million noisy qubits." arXiv preprint
arXiv:1905.09749, 2019.

◼ [Bos, Ducas. et.al’18] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V.
Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehle,
“CRYSTALS - Kyber: A CCA-secure module-lattice-based KEM,” in IEEE
European Symposium on Security and Privacy, EuroS&P, pp. 353–367,
2018.

◼ [Poppelmann, Güneysu’12] T. Poppelmann and T. Güneysu, “Towards
efficient arithmetic for lattice-based cryptography on reconfigurable
hardware,” in LATINCRYPT 2012, pp. 139–158, 2012.

◼ [Oder, Güneysu’17] T. Oder and T. Güneysu, “Implementing the NewHope-
Simple key exchange on low-cost FPGAs,” in LATINCRYPT, 2017.

◼ [Kuo, Yang’17] P.-C. Kuo, W.-D. Li, Y.-W. Chen, Y.-C. Hsu, B.-Y. Peng, C.-
M. Cheng, and B.-Y. Yang, “High performance post-quantum key exchange
on FPGAs,” IACR Cryptology ePrint Archive, p. 690, 2017.

Reference

