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Introduction

Public Key Cryptography

◼Different keys are used for encryption and decryption

◼Algorithm triples {KeyGen, Encryption, Decryption}

◼Standardized algorithm (Classic)

➢RSA, see PKCS#1, ANSI X9.31, IEEE 1363
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Introduction

An Imminent Threat

◼Quantum algorithms
➢Shor’s algorithm needs about 1 billion qubits [Shor’97]

➢20 million qubits break RSA in 8 hours [Gidney’19]

◼Quantum computers 
➢ In May 2017, USTC developed a 10-qubit circuit

➢ In Oct. 2017, Intel announced a 17-qubit chip 

➢ In Nov. 2017, IBM established a 50-qubit computer

➢ In Mar. 2018, Google announced a 72-qubit chip

➢ In Aug. 2018, Rigetti Computing plans to build and  
deploy a 128-qubit system

Algorithm optimization space and computing 

power growth should be considered
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Introduction

Public key cryptography

Classic

Post-quantum

Code-based
Lattice-based

Kyber

NewHope

 

 

 

New Cryptography Schemes

◼ Post-quantum cryptography = Quantum-resistant 
➢Kyber is a new scheme based on Module-LWE problem

[Bos, Ducas. et.al’18]

We are here
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Introduction

A Brief Introduction to Kyber

◼Computing over vector of polynomials (polyvec) 
➢13-bit coefficients, modulo 7681

➢n-dimensional polynomial, n=256

➢k-dimensional vector, depends on security level (2,3,4)

◼Example, As + e is computational intensive

⚫ Kyber.KeyGen(A): Choose two polyvec s, e from βk
η and compute t = As + e. 

The public key is (A, t) and the private key is s.

⚫ Kyber.Enc(A, t, m): The message m is first encoded to  ͞m. Sample polyvec r, 

e1 from βk
η and e2 from βη. The ciphertext then consists of polyvec u = ATr + e1

and polynomial v = tTr + e2 + ͞m.

⚫ Kyber.Dec(s, u, v): Compute m’ = v−sTu and recover the original message m   

from m’ using a decoder.
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Introduction

Multiplication over polyvec

◼Example: for Kyber512, k=2
➢ t = As + e

◼Number-Theoretic Transformation (NTT) [Po.’12]
➢Execute NTT transformation for k polynomials             

respectively in a polyvec. 

=+

sA e t

in the figure,

n=8
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Contributions

Overview

◼Optimizing the Control Logic
➢Merge operations to avoid idle cycles

◼Optimizing Memory Access Scheme
➢Dual-column sequential storage structure

➢ in-place computation without bit-reversal 

◼Optimizing Arithmetic Logic Unit
➢Gentlemen-Sande (GS) butterfly

➢ Integrate NTT, multiply-accumulate and multiply-add

➢Pipelined implementation
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Contributions

Optimizing Arithmetic Operations

◼By adjusting control logic
➢Save 29.4% cycles for Kyber512 (k=2) 

➢Save 33.3% cycles for Kyber1024 (k=4)
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Contributions

Optimizing Memory Access Scheme

◼Break the bottleneck
➢Read 2 coefficients and writeback 2 coefficients

➢Block RAM slice can be configured as
⚫ 2 read ports

⚫ 2 write ports

⚫ 1 read and 1 write ports

◼Dual-column sequential scheme
➢ Increase memory width

➢Example, Kyber512 (k=2)

A

✓ 0.5 BRAM

✓ Width=26

✓ Depth=512

Block RAM 36K

0

1

s

0 1 ✓ 0.25 BRAM

✓ Width=26

✓ Depth=256

Block RAM 36K
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Contributions

Optimizing Memory Access Scheme

◼In-place NTT transformation
➢Transform 2 polynomials with time-multiplexed ALU

➢Swap data before and after execution
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Contributions

Optimizing Arithmetic Logic Unit

◼Make full use of  the DSP slice
➢Cooley-Tukey vs. Gentlemen-Sande butterfly
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Contributions

Optimizing Arithmetic Logic Unit

◼Integrate functions in one processor
➢Forward NTT and inverse NTT transformation

➢Multiply-accumulate over polyvec, like a0◦s0+a1◦s1

➢Multiply-add over polyvec, like a0◦s0 + e0

Multiply-accumulate Multiply-add
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Contributions

Optimizing Arithmetic Logic Unit

◼Design a pipelined structure
➢Maximize the usage of DSP/BRAM internal registers

➢Trade-off between area and performance
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Implementations

Implementation on FPGAs

◼Experimental Setup
➢ Implemented in Verilog HDL available at: 

⚫ https://github.com/cccisi/Kyber_ASPDAC

⚫ Built on XILINX Vivado® 2018.2 design suite for Artix-7

⚫ Also built on XILINX ISE ® 14.7 design suite for Spartan-6

➢Post-place and route

◼Results
➢Maximum frequency

⚫ 130MHz for Kyber1024

⚫ 31684 NTT operations per second

➢Area
⚫ The processor occupies 477 LUTs and 237 FFs

https://github.com/cccisi/Kyber_ASPDAC
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Implementations

Implementation on FPGAs

◼Comparisons on NTT efficiency 
➢Same security level on Artix-7

➢Compared with [Oder, Güneysu’17]
⚫ Integrated more functions

⚫ Over 5x advantages in performance

➢Compared with [Kuo, Yang’17]
⚫ Over 55.2% performance with about 17.2% logical units

Processor
Area

Operations/s Efficiency
LUTs FFs DSPs

This Work 477 237 1
NTT: 31684 66.4

MUL: 9050 19.0

Oder, Güneysu’17 415 251 2
NTT: 3487 9.3

MUL: 1545 3.7

Kuo, Yang’17 2832 1381 8
NTT: 59337 21.9

MUL: NA NA
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Conclusion

◼Conclusion
➢We achieved high-efficiency post-quantum algorithm 

on resource-constrained hardware

➢Broke memory bottleneck for higher performance

➢Made full use of FPGA internal resources

➢ Implemented the key modules for Kyber512/1024, but 
NOT the entire Kyber cryptosystem

◼Future works
➢Countermeasures against possible attacks, side-

channel attack …

➢Which post-quantum algorithms are the outstanding 
ones in practical applications?
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